

# **Maryland PATHWAYS**

## 2020 MWG Scenario

June 18, 2020

Tory Clark, Director Charles Li, Consultant Snuller Price, Senior Partner



# + Background

- + Assumptions for the Reference and MWG Scenario
- + MWG Scenario Results
- + Appendix



+ As a part of this project, MDE offered a scenario to be designed by the Mitigation Working Group (MWG)

- This scenario is separate from the MWG scenario proposed in 2018 (previously called Policy Scenario 3)
- + In 2020, the MWG selected a set of policies and measures for consideration by the State.
  - A formal letter was submitted by NRDC, TNC, Sierra Club, and CCAN and a webinar followed to discuss how the assumptions would be translated into the PATHWAYS model.
- The goal was to model the proposed set of measures and see what the impact would be on emissions and costs
- Not all of the input assumptions have a specific associated policy recommendation
- + This scenario has been defined by the MWG and does not represent any policy recommendations from the State



#### + Electricity Generation

- Coal facility retirements from latest RGGI Modeling (New Jersey's rulemaking)
- 50% RPS by 2030 (Clean Energy Jobs Act)\*
- 1.5 GW of rooftop solar adoption by 2026\*
- RGGI 2030 cap
- Relicense Calvert Cliffs Nuclear Facility

#### + Transportation

- CAFE Standards improving through 2026
- Zero Emission Vehicle Mandate\*

### + Buildings

- EmPOWER efficiency goals as currently established through 2023
- DHCD Low Income EE Program
- MEA Woodstoves Program
- + Other
  - Forest Management and healthy soils sequestration projections

\*Updated from 2019 Reference Scenario

# MWG Scenario Policies and Measures

### + Electricity Generation

- 50% RPS by 2050, 75% RPS and 100% zero-emissions electricity by 2040
- All in-state coal-fired power plants are retired by 2030
- No new natural gas power plants built after 2020
- Increased net metering cap to 3 GW by 2030
- Accelerated RGGI cap (50% reductions by 2030, 100% reductions by 2040, vs. 2020)

#### + Transportation

- CAFE Standards improving through 2026
- Aggressive zero-emission vehicle sales
- Low LDV VMT growth rate (0.6% per year)

### + Buildings and Industry

- Increased EmPOWER efficiency goals by 2023 and beyond
- Aggressive building electrification for new construction and retrofits

#### + Other

- Methane measures in manure management and enteric fermentation
- Increased forestry sinks by 10% by 2030 (vs. 2017)

# **5** Total Net GHG Emissions



- The MWG scenario overachieves the near-term GHG targets and is close to meeting the 2050 GHG target.
- It overachieves the 2020 GHG target by 3.9 MMT CO2e, and the 2030 GHG target by 8.7 MMT CO2e
- + It gets close to the 2050 GHG target, but there is still a gap of 8.9 MMT CO2.



- + MWG Scenario has substantial emission reductions across all sectors.
- Transportation and electricity generation sectors have the largest emission reductions compared to Reference
  - Electricity generation drops due to new renewable builds, coal phase out (by 2030), and natural gas phase out (by 2040). Remaining electricity emissions are from imports.



#### 2020 Reference



#### **MWG Scenario**



In the MWG Scenario, ZEV sales ramp up quickly after 2025 to meet the goal of 800,000 by 2030, 5 million by 2050



2020 Reference

| Thousand  | 2025 | 2030 | 2050   |
|-----------|------|------|--------|
| BEV       | 120k | 390k | 1,800k |
| PHEV      | 40k  | 70k  | 100k   |
| Total ZEV | 160k | 460k | 1,900k |

#### **MWG Scenario**



2015 2020 2025 2030 2035 2040 2045 2050

| Thousand  | 2025 | 2030 | 2050   |
|-----------|------|------|--------|
| BEV       | 200k | 600k | 4,300k |
| PHEV      | 70k  | 200k | 700k   |
| Total ZEV | 270k | 800k | 5,000k |



- Building electrification adoption increases steadily after 2020; electric appliance sales share reaches 90% by 2050
- MWG Scenario achieves 100% electric heat pump adoption in all new construction by 2025 and retrofits reach ~1.3 Million by 2050

3.0

Residential Space Heaters (Sales Share)

Residential Space Heaters (Total Stock)







+ We leveraged modeling completed by Resources for the Future (RFF) and their E4ST model and then calibrated to additional requests from the MWG

- We assumed that all in-state coal units retire by 2030 and all in-state natural gas units retire by 2040 (no gas units are built after 2020)
- This results in roughly a 75% RPS by 2040, with the remainder of electricity demand being met by nuclear power (Calvert Cliffs) and imports from PJM
- + We increased the net metering cap to 3 GW by 2030, modeled as rooftop solar.
- We assumed that the RGGI cap continues to tighten to get to 100% reduction by 2040, which we modeled as a reduction in the imports emission factor, weighted by RGGI states in PJM (incl. PA and NJ).
  - Remaining emissions from PJM do carry an emissions factor, so though in-state generation is 100% zero-carbon, the total electric sector continues to have emissions associated with non-RGGI imports.

\*\*Neither E4ST or PATHWAYS is a detailed electricity operations model, so neither model can tell us how reliable this system is in a given year, or exactly what renewable integration technologies may be required (e.g. battery storage, long-duration storage, renewable overbuild). For this scenario, we assume that imported power from PJM balances the system to maintain reliability.



- Total generation increases to match the increased demands from building and transportation electrification
  - Coal generation is phased out in 2030, and gas generation is phased out in 2040
  - Solar generation accounts for 40% of total load, and wind generation 8% in 2040
  - Nuclear generation declines after 2030. This is because renewable generation is prioritized for dispatch, which results in nuclear not running at full capacity during hours of high renewable output





- + By 2030, 50% RPS is met with the CEJA carve-outs for in-state wind and solar by 2030
- + By 2040, 75% of total load is met by generation attributable to clean renewable energy sources including solar, wind, biomass and hydro:
  - Increase in renewable generation after 2030 is mainly from substantial new solar build and more out-of-state RECs through imports



# Solar Capacity and Land-use Estimates

- Rooftop solar capacity is projected to increase to 3,000 MW by 2030, doubling the existing net metering cap.
- Utility-scale solar capacity increases substantially after 2030 due to increased demand from electrification, more stringent GHG targets and phase-out of coal and gas.
- + The land-use estimate assumes utility-scale solar is ground-mounted and takes up 8ac per MW of installed capacity.

|                              | 2025   | 2030   | 2035   | 2040   |
|------------------------------|--------|--------|--------|--------|
| Rooftop Solar<br>(MW)        | 2,072  | 3,000  | 3,000  | 3,000  |
| Utility-scale<br>Solar (MW)  | 1,336  | 1,667  | 5,522  | 9,691  |
| Estimated<br>Land-use (acre) | 10,690 | 13,336 | 44,173 | 77,530 |



- + Update GGRA Plan scenario modeling
- Work with RESI at Towson University to update macroeconomic modeling
- + Finish modeling in Summer 2020







- + The MWG requested additional EmPOWER achievements for the 2023 program cycle and beyond, referencing PEPCO's 3% achievement in their last filing.
- + E3 modeled this by updating our PATHWAYS assumptions, which are a proxy for energy efficiency achievements

| Category of<br>EMPOWER Electricity<br>Efficiency | Current Assumption (based on Policy Scenario<br>1 and 4)                                                                                                             | Assumptions for the MWG Scenario                                                                                                      |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| New technology sales                             | 50% of new sales of all electric appliances are<br>assumed to be efficient (e.g. EnergyStar) from<br>2015-2023 to represent EmPOWER, and<br>continued from 2024-2050 | Start from 50% new sales in 2015 through 2023<br>and ramp up to <b>100% by 2030</b> to reflect<br>increased EE targets from utilities |
| Behavioral<br>conservation and<br>smart devices  | 5% reduction in energy services demand below<br>Baseline Scenario in residential lighting, space<br>heating, and water heating by 2023, and 10% by<br>2050           | No Change                                                                                                                             |
| Other non-stock sectors                          | 10% reduction in electric energy consumption<br>below Baseline Scenario by 2023 and 20% by<br>2050                                                                   | No Change                                                                                                                             |
| Distribution System<br>Optimization              | Reduction in transmission and distribution losses<br>from 5.4% to 4.8%, to represent EmPOWER<br>estimates                                                            | Reduction in transmission and distribution<br>losses from 5.4% to <b>4.6%</b> (based on latest<br>PEPCO filing)                       |

# **Electricity Generation (1/2)**

# + RPS

- 25% x 2020, 50% x 2030, Zero emissions electricity by 2040 with at least 75% attributed to clean, renewable energy sources like wind and solar
  - E3 leveraged model runs from RFF's E4ST model and made modifications to mirror the assumptions above

## + Coal and Natural Gas Power Plants

- All in-state coal-fired power plants are phased out by 2030
- A moratorium on new natural gas power plants
  - E3 leveraged model runs from RFF's E4ST model and made modifications to mirror the assumptions above

# **Electricity Generation (2/2)**

# + RGGI

- Beginning in 2023, accelerate the carbon cap to achieve 50% reductions (relative to 2020 cap) by 2030 and then 100% cap reduction by 2040
  - E3 calculated a new import emission factor from PJM that's reflective of the above emissions reductions only from RGGI states
- Also ensure other RGGI states' clean energy and climate policies are fully reflected in the modeling, including the recently enacted Virginia Clean Energy Act
  - Addressed above

# + Rooftop PV

- Double the existing net metering cap to reach 3000 MW by 2030
  - E3 Updated



### + Energy efficiency

- Increase annual savings targets for electric efficiency and conservation programs to 3% annual rate savings for electricity starting in next EmPOWER cycle (2023) [also includes industrial energy]
  - E3 translated increased EMPOWER savings into new efficient appliance sales, reduction in non-stock sectors, and distribution system optimization. We reviewed recent PEPCO EmPOWER filing to understand their recent 3% annual efficiency achievement.

### + Building electrification

- Implement an all-electric standard for new buildings by 2025 (no new gas hookups).
  - We do not explicitly model existing vintages of buildings vs. new construction, so we recommend meeting the targets shown below.
- Residential heat pump retrofit deployment -- 400,000 electric heat pump deployment by 2030, 800,000 by 2040, 1.2 million by 2050
  - E3 modeled based on 2019 PS2 assumptions. Though we do not explicitly model new construction and retrofits separately, approximate HP retrofits deployment in the MWG scenario: 240k by 2030, 700k by 2040, and 1.3 million by 2050

# **E** Transportation (1/2)

# + LDV ZEVs

- Aggressive sales after 2025 (800,000 by 2030, 5 Million by 2050)
  - E3 assumed same assumption as 2019 PS2
- including an all-electric state-fleet requirement beginning in 2022 for contracts of purchases and leases to be electric only, excluding emergency vehicles.
  - E3 assumed that fleet is within numbers above.

# + TCI

- An emissions cap of at least 25% below projected 2022 levels by 2032
  - Excluded in analysis, but TCI is a policy mechanism that will help achieve the ZEV targets outlined above

# + Fuel Economy Standards

- Federal CAFE standards for LDVs through 2026, with continued annual improvement beyond 2026 at (at least) the same rate
  - Can be addressed in sensitivity analysis

# **E** Transportation (2/2)

# + LDV VMT

- 0.6% growth: Additional smart growth and transit measures
  - Leveraged updated work from MDOT and implemented a 0.6% growth rate for LDV VMT.

### + HDV ZEVs and diesel hybrids

- Aggressive sales of electric and diesel hybrid HDVs after 2030 (40% new sales of either combined electric vehicle and diesel hybrid, full electric, or other zeroemissions vehicles by 2030 and 95% by 2050 by assuming aggressive ZEV adoption); truck stop electrification and zero-emission truck corridors
  - E3 used same assumption as 2019 PS2

### + Other transportation sectors

- Electrification of 70% of transit buses by 2030, 100% by 2035; Electrification of 50% of construction vehicles by 2040, 100% by 2050
  - E3 modeled the above assumptions



# + Industry

- 30% reduction below Reference Scenario by 2050
  - E3 used 2019 PS2 assumptions but with updated reference scenario

# + Biofuels

- Existing ethanol and biodiesel blends
  - E3 used 2019 PS1/3/4 assumptions

### + Other sectors

- Reductions in enteric fermentation of 16% below 2014 levels by 2030, and reductions in manure management of 65% below 2014 levels by 2030
  - E3 used 2019 PS2 assumptions
- Recycling and composting rates -- need to identify the right rates
  - Not modeled
- Grow forestry sinks by 10% by 2030
  - E3 modeled 10% reduction from 2017 forestry numbers, which replaces previous soil and forest management reductions.